skip to main content


Search for: All records

Creators/Authors contains: "Brangulis K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The preferential adaptation of pathogens to specific hosts, known as host tropism, evolves through host-pathogen interactions. Transmitted by ticks and maintained primarily in rodents and birds, the Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the mechanisms of host tropism. In order to survive in hosts and escape complement-mediated clearance, a first-line host immune defense, Bb produces the outer surface protein CspZ that binds to the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants vary in human FH-binding ability. Together with the FH polymorphisms found amongst vertebrate hosts, these findings raise a hypothesis that minor sequence variation in a bacterial outer surface protein confers dramatic differences in host- specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, identifying a minor change localized in the FH-binding interface, and uncovered that the bird and rodent FH-specific binding activity of different CspZ variants directly impacts infectivity. Swapping the divergent loop region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. By employing phylogenetic tree thinking, we correlated these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ lineages and elucidated evolutionary mechanisms driving CspZ emergence. Our multidisciplinary work provides mechanistic insights into how a single, short pathogen protein motif could greatly impact host tropism. 
    more » « less